一道光线(这里的光线是一种数学概念)由主体发出,通过镜片表面,就会产生折射或散射。这是高中程度的物理学。
光线折射程度由玻璃的散射系数(refractionindex)来决定,假如光学设计师知道光线接触到第一片镜片的点和入射角,他就能相当精确地计算出这一道光线折射的路径,从而追踪出光线的轨迹。我们也知道,点光源向四面八方辐射出光线(即光子[photons]),而只有部分光子会穿过镜片。
经由数学方程式仿真,光学设计师假设:所有进入镜头的光子能量都可被视为许多单一的光子射线(以后简称为光线)。这束光线经过镜片群的轨迹也都能被计算追踪出来.
在高速计算机发明之前,为了计算这些光学公式,唯一的方法,就是使用对数表以人工计算。在三○年代,光学设计师靠着对数表,一天只能完成50道表达式,每一道表达式都必须检查两遍,因为在计算时很容易发生错误。
如果7被当成9,就会导出很严重的错误。所以当时的光学表达式都讲求缮写时要非常清晰,不能草草了事。有人曾经非常荣幸地在徕卡总公司拜读过当年徕兹(Leitz)公司所保存下来的光学设镜头设计计原稿,以及大量的计算图表,全部缮写得非常工整,以便阅读或供其它部门拷贝。
这些都是早期光学设计师的心血结晶。一只6片镜群的设计,每一个镜片表面都要计算200道光线的轨迹折射,整组镜头要3000道运算,这需要足足计算三个月的时间。这些原稿从来都不曾公开过,因此早年在徕兹公司的光学设计工作是难以想象的艰辛。
如果说,当年的经典名镜设计都是由「某一个设计大师」自己苦心孤诣多年所创造出来的的光学杰作,那才是是个神话!在现实生活中,通常是由一位设计主管负责指导一群大部份是女性的工作者,并由她们负责大量且重要的计算工作。设计主管指导整个设计,他从手下的计算中获得数据,并从中决定究竟是继续原设计还是要做调整。
一般用家常会试用几种不同的版本,以得到满意的镜头。这也就不难理解严肃的摄影师为何会选用不同的镜头测试,使用直到满意为止了。为了平衡不同的像差而不得不保留一定量的残余像差,而且也不是每位设计人员都能够灵光乍现地想到最好的解决方案。
在精密光学镜头的装配过程中,为了实现高精度高效率以及便于复检,需要的不只是高精度仪器设光学镜头备,更需要在光学设计以及机械设计中充分考虑装配的需要。
本文以两个实例来探讨机械结构设计在光学镜头装调中的应用:
中低精度的镜头在装配时,一般采用被动式。装配精度主要由镜筒的内壁加工精度决定,而镜片与镜筒的接触一般为“面”接触。
中高精度的镜头装配,则必须采用主动式装配,在装配过程中,监控各镜片间的相对位置,以保证其同轴性和间距。此时,镜片与镜筒之间需要有一定的间隙与调整空间,装配精度不再由镜筒的内壁精度决定。为保证对镜片实现高精度和高灵敏度的调整,一般镜片与镜筒支撑之间的接触为“环线”接触,或针对每个镜片半径特殊设计的“窄环面”接触。
主动装配中,仅保证同轴度的话,对镜片通常有四个自由度的调整:2维平移,2维倾斜。实际镜头设计中,不同曲率的镜片对这种调整的敏感程度是不同的,比如曲率越大则越敏感。从效率与成本角度考虑,在镜筒设计中,对比较敏感的镜片的支撑,一般设计成“环线”或“窄环面”方式,而对不敏感的镜片,则设计成“面”接触支撑。