一、照相镜头
照相镜头的光学特性可由三个参数来表示,即照相镜头的焦距f'、相对孔径D/f'和视场角2ω'。其实就135
照相机而言,其标准画幅已确定为24mmX36mm,则其对角线长度为2D=43.266。从下表我们可以得出照相机镜头的焦距f'和视场角ω'之间存在着以下关系:
tgω'=D/f'式中:2D——画幅的对角线长度;f'——镜头的焦距。
照相机镜头的另一个最重要的光学特征指标是相对孔径。它表示镜头通过光线的能力,用D/f'表示。它定义为镜头的光孔直径(也称入瞳直径)D与镜头焦距f'之比相对孔径的倒数称为镜头的光圈系数或光圈数,又称F数,即F=f'/D。当焦距f'固定,F
数与入瞳直径D成反比。由于通光面积与D的平方成正比,通光面积越大则镜头所能通过的光通量越大。因此当光圈数在最小数时,光孔最大,光通量也最大。随着光圈数的加大,光孔变小,光通量也随之减少。
如果不考虑各种镜头透过率差异的影响,不管是多长焦距的镜头,也不管镜头的光孔直径有多大,只要光圈数值相同,它们的光通量都是镜头设计一样的。对照相机镜头而言,F数是个特别重要的参数,F数越小,镜头的适用范围越广。
与目视光学系统相比,照相物镜同时具有大相对孔径和大视场,因此,为了使整个象面都能看到清晰的并与物平面相似的象,差不多要校正所有七种象差。照相物镜的分辨率是相对孔径和象差残余量的综合反映。在相对孔径确定后,制定一个既满足使用要求,又易于实现的象差最佳校正方案。为方便起见,往往采用“弥散圆半径”来衡量象差的大小,最终则以光学传递函数对成象质量作出评价。
二、投影镜头
投影物镜是将被照明的物成一明亮清晰的实像在屏幕上,一般讲,像距比焦距大的多,所以物平面在投影物镜物方焦平面外侧附近。投影物镜的放大率是测量精度、孔径大小、观测范围和结构尺寸的的重要参数。放大率愈大,测量精度愈高,物镜孔径愈大。当工作距离一定时,放大率愈大,共轭距愈大,投影系统结构尺寸越大。由于其是起放大作用,自光学知识可知,像面中心照度与相对孔径平方成正比,可用增大相对孔径的方法来增加象面照度。液晶式投影机上所用的投影镜头同传统的投影物镜的区别:
1.相对孔径光学镜头较大。
2.出瞳距长,即需要设计成近远心光路。
3.工作距离长。
4.解像力高.
移轴镜头小知识:
1)数码单反相机的影像传感器所拍摄到的画面其实只是镜头成像圈中心区域的长方形剪切部分。所谓成像圈,就是通过镜头的光线可成像的圆形范围,其直径要大于影像传感器的对角线长度。移轴镜头的成像圈比普通镜头要大。这样,即使进行倾斜与偏操作,也能保证画面在成像圈内。
2)移轴镜头非常适合全景摄影,可以把多幅照片合成在一起。和传统镜头不同,移轴镜头的优势是不需要移动镜头的中心点,也因此避免了前景被摄体出现视差。
正常情况下,镜头平面和相机的成像平面是平行的,而被摄体平面和镜头平面以及成像平面也是平行的。如果一个平面的物体,比如建筑物的一个面,也和成像平面平行的话,那么整个物体可以被清晰地记录。但是,如果被摄体平面并没有和成像平面平行,那么清晰的范围则有限。当通过被摄物平面、成像平面和镜头平面画延长线,则三线交汇于一点,即三个面相交于一条直线时,从近到远的景物都能够清晰成像,甚至在全开光圈时也是如此。